Analysis and Finite Element Simulation of Mhd Flows, with an Application to Seawater Drag Reduction

نویسندگان

  • A. J. Meir
  • P. G. Schmidt
چکیده

Much research effort has recently been devoted to the electromagnetic control of saltwater flows, exploiting the macroscopic interaction of saltwater with electric currents and magnetic fields. This interaction is governed by the equations of viscous incompressible MHD, essentially, the Navier-Stokes equations coupled to Maxwell’s equations. A major problem in the analysis and numerical solution of these equations is the fact that while the Navier-Stokes equations are posed in the fluid domain, Maxwell’s equations are generally posed on all of space. Consequently, electric and magnetic fields do not satisfy standard boundary conditions, but jump or continuity relations on the surface of the fluid domain (and other interfaces). Frequently the resulting difficulties are circumvented by prescribing more or less artificial boundary conditions. In this paper we present a novel formulation of the MHD equations that avoids some inherent difficulties of more traditional approaches by employing the electric current density rather than the magnetic field as the primary electromagnetic variable. This formulation leads to initialboundary value problems for a system of integro-differential equations in the fluid domain and lends itself naturally to the use of finite-element based discretization techniques. As a first application we describe a mixed finite-element method for the numerical solution of a class of stationary MHD flow problems and report on the computational simulation of a simple drag reduction experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of air injection system for drag reduction in high speed vessels using numerical simulation software ANSYS-Fluid Flow

Many existing phenomena in nature are considered new design ideas in various fields of industry. Bionics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology. By performing bionic review, the researchers found the penguins by delivering air locked under their wings and creating air bubbles, the drag significant...

متن کامل

Experimental and 3D Finite Element Analysis of a Slotless Air-Cored Axial Flux PMSG for Wind Turbine Application

In this research paper, the performance of an air-cored axial flux permanent magnet synchronous generator is evaluated for low speed, direct drive applications using 3D finite element modeling and experimental tests. The structure of the considered machine consists of double rotor and coreless stator, which results in the absence of core losses, reduction of stator weight and elimination of cog...

متن کامل

NUMERICAL SIMULATION OF EFFECTS OF NON-IONIZED MASS INJECTION ON THE MHD FLOW IN A CIRCULAR CHANNEL

Control of a fluid velocity profile by injection and suction of non-ionized flow in presence of a uniform steady magnetic field has important technical applications. In this paper, the unsteady incompressible and viscous conducting fluid flow has been investigated in a circular channel. The channel wall has been assumed to be non-conducting and porous. It has been subjected to a uniform steady ...

متن کامل

Axial Crushing Analysis of Sandwich Thin-walled Tubes using Experimental and Finite Element Simulation

Application of impact energy absorption systems in different industries is of special significance. Thin-walled tubes, due to their lightness, high energy absorption capacity, long crushing length and the high ratio of energy absorption to weight, have found ever-increasing application as one of the most effective energy absorption systems. In this research, through  carrying out experimental t...

متن کامل

Incremental layerwise finite element formulation for viscoelastic response of multilayered pavements

This paper provides an incremental layerwise finite element formulation for the viscoelastic analysis of multilayered pavements.  The constitutive behavior of asphalt concrete is represented by the Prony series. Layerwise finite element has been shown to provide an efficient and accurate tool for the numerical simulation of laminated structures. Most of the previous research on numerical simula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998